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Abstract
We consider higher-dimensional generalizations of the classical one-
dimensional 2-automatic paperfolding and Rudin–Shapiro sequences on N.
This is done by considering the same automaton-structure as in the one-
dimensional case, but using binary number systems in Zm instead of in N.
The correlation function and the diffraction spectrum for the resulting m-
dimensional paperfolding and Rudin–Shapiro point sets are calculated through
the corresponding sequences with values ±1. They are shown to be quasi-
independent of the dimension m and of the particular binary number system
under consideration. It is shown that any paperfolding sequence thus obtained
has a discrete spectrum. The Rudin–Shapiro sequences have an absolutely
continuous Lebesgue spectral measure.

PACS numbers: 61.44.Br, 61.50.Ah, 89.75.Kd
Mathematics Subject Classification: 11B85, 62M15, 82D25

1. Introduction and preliminaries

The 2-automatic one-dimensional Thue–Morse, paperfolding and Rudin–Shapiro sequences
as maps f : N → {+1,−1}, their correlation functions and spectral properties have been dealt
with in, e.g., [1, 2] and were shown to be prototype examples of sequences with
singular continuous, discrete and absolutely continuous diffraction spectra, respectively.
Similar properties for some higher-dimensional extensions of these sequences considered as
substitution sequences are mentioned in [3–5]. Note that the spectral properties of sequences
also play a crucial role in the theory of quasicrystals, e.g., [6, 7].

In [8], we presented a particular two-dimensional generalization of Thue–Morse,
paperfolding and Rudin–Shapiro sequences as automatic sets, i.e., as maps f : Z2 → {0, 1}.
0305-4470/05/122599+24$30.00 © 2005 IOP Publishing Ltd Printed in the UK 2599
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This generalization resulted from considering the same automaton underlying the one-
dimensional versions of these sequences over N, but using binary number representations
in Z2 instead of in N. This paper will discuss the correlation and the spectral properties of the
paperfolding and Rudin–Shapiro sequences obtained by extending this kind of generalization
to all dimensions. The spectral properties of higher-dimensional Thue–Morse sequences will
be dealt with in a separate paper.

We briefly recall several characterizations of m-dimensional automatic sequences, for
more information consult [9, 10]. A number system (H,W) in Zm is given by an expanding
m × m integer matrix H (i.e., all eigenvalues have absolute value greater than 1) and a
corresponding complete digit set W = {0, w1, . . . , w|det(H)|−1} ⊂ Zm, such that any x ∈ Zm

has a unique finite (H,W)-representation

x = Hn−1νn + Hn−2νn−1 + · · · + Hν2 + ν1,

where νi ∈ W and νn �= 0. Note that ∪x∈Zm,w∈W(Hx + w) = Zm.
The (H,w)-decimation, or decimation for short, of a sequence f : Zm → C, for w ∈ W

is the sequence ∂H,w(f ) : Zm → C defined as

∂H,w(f )(x) = f (Hx + w),

and we agree that we write ∂w if H and W are clear from the context. Repeated application of
decimations to f leads to

∂νn
◦ ∂νn−1 · · · ◦ ∂ν1(f )(x) = f (Hnx + Hn−1νn + Hn−2νn−1 + · · · + ν1). (1)

The (H,W)-kernel of f , denoted as ker(f ) = kerH,W (f ) is the set of all possible decimations
of f , together with f . A sequence f is (H,W) automatic if ker(f ) is finite. A set D ⊂ Zm

is automatic if its characteristic sequence χD : Zm → {0, 1}, i.e., χD(x) = 1 if and only if
x ∈ D, is automatic.

Alternatively, an automatic sequence f is defined by a so-called kernel graph. This is a
labelled directed graph where the vertices are the sequences in ker(f ) and with a directed edge
labelled w ∈ W pointing from vertex g to vertex h if and only if ∂w(g) = h. This graph can
also be described by the decimation matrices Aw ∈ {0, 1}ker(f )×ker(f ), w ∈ W , i.e., matrices
whose rows and columns are labelled by the kernel elements of f

Aw = (
aw

g,h

)
,

where aw
g,h = 1 if ∂w(g) = h and aw

g,h = 0 otherwise.
For convenience, we will from here on always consider ker(f ) to be a set with a fixed

order that can be used for ordered labellings.
The kernel graph can also be interpreted as a finite automaton that generates the sequence

f as follows: if x ∈ Zm, x �= 0 has the (H,W)-representation

x =
n∑

j=1

Hj−1νj ,

then x defines a path in the kernel graph. The path begins in f , follows the arrows labelled
ν1, ν2, . . . , νn and terminates in an element g ∈ ker(f ). The value of f at x is equal to the
value of g at 0, i.e., f (x) = g(0). This follows from (1) with x = 0.

Figure 1 displays the kernel graphs, corresponding decimation matrices and values for the
kernel elements at 0 for the paperfolding and Rudin–Shapiro sequences with values in {−1, 1}.
The underlying number system (H,W) consists of an expanding matrix H with |det(H)| = 2,
and a complete digit set W = {0, w}. As the complete digit set contains only two elements,
(H,W) is called a binary number system [11].
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Figure 1. Kernel graphs and decimation matrices for the class of paperfolding and Rudin–Shapiro
sequences.

It turns out that an automatic sequence f can also be obtained as a component of the fixed
point of a substitution �f on the set of vector sequences F : Zm → Cker(f ), defined as

�f (F )(Hx + w) = AwF(x)

for w ∈ W,Aw the corresponding decimation matrix, and for all x ∈ Zm. Then,
F(x) = (g(x))g∈ker(f ) is a fixed point of this substitution, i.e., �f (F ) = F . By repeated
application of the previous equation, we obtain that

F(x) = Aν1Aν2 · · ·Aνn
F(0), (2)

where x = ∑n
j=1 Hj−1νj is the unique (H,W)-representation of x ∈ Zm\{0}. Note that

F(0) = A0F(0), and that every fixed point G(0) of A0 gives, via equation (2), rise to a
sequence G : Zm → Cker(f ) such that the component of G with label f has the kernel graph
of f as a generating automaton. However, it is not necessarily true that the kernel graph of
this component is the same as the kernel graph of f . For example, in figure 1, the values at 0
of the kernel elements correspond to one such fixed point F0 when the sequences take values
in {−1, 1}. By letting all values at 0 be equal to 1, what also corresponds to a fixed point of
A0, the automaton would generate the constant sequence 1. But then the figures do no longer
represent the kernel graph of this sequence 1.

Observe that for the kernel graphs in figure 1, no reference is made to a specific dimension
m, and neither to a specific underlying binary number system (H,W = {0, w}) in Zm. Any
appropriate choice of these parameters corresponds to a particular paperfolding or Rudin–
Shapiro sequence. Hence, these kernel graphs represent a whole class of automaton-similar
sequences. We formalize this concept in

Definition 1.1. Let f1 : Zm1 → C be (H1,W1)-automatic and let f2 : Zm2 → C be (H2,W2)-
automatic. The sequences f1 and f2 are called automaton-similar if there exist bijections
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ϑ : kerH1,W1(f1) → kerH2,W2(f2) and ξ : W1 → W2 such that

(1) ϑ(f1) = f2,

(2) ϑ(∂H1,w(g)) = ∂H2,ξ(w)(ϑ(g)) for all w ∈ W1, g ∈ ker(f1),

(3) ξ(0) = 0.

Example. Let f : Zm → C be a (H,W)-automatic sequence and let θ : C → C be
an injective map. The sequence θ(f ) defined as θ(f )(x) = θ(f (x)) is automaton-similar
to f . In particular, if θ is the multiplication with a nonzero number α, then the sequence
(αf (x))x∈Zm is automaton-similar to f . Furthermore, note that if g is (H,W)-automatic and
automaton-similar to a paperfolding sequence f with values ±1, then g has two different
values a, b. Moreover, replacing a by −1 and b by 1 generates a (H,W)-automatic sequence
g′ which is paperfolding and has values ±1. This also shows that every sequence g in the
automaton-similarity class of paperfolding sequences can be obtained from a paperfolding
sequence with values ±1. The same holds for sequences which are automaton-similar to a
Rudin–Shapiro sequence with values ±1.

In other words, automaton-similar sequences have isomorphic kernel graphs. Practically,
it is convenient to consider ϑ : kerH1,W1(f1) → kerH2,W2(f2) as an order preserving map.
Then Aξ(w) for f2 is the same as Aw for f1.

In that way, the class of automaton-similar paperfolding and Rudin–Shapiro sequences
is given by all sequences generated by the automaton corresponding to the kernel graphs in
figure 1, for all dimensions m and all binary number systems (H,W) in Zm.

A complete characterization of binary number systems for Zm is given in [11]. We
recall the notion of the companion matrix CH of a matrix H ∈ Zm×m. When χH (x) =
xm + am−1x

m−1 + · · · + a0 denotes the characteristic polynomial of H, then the companion
matrix is given by

CH =



0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

0 0 1 · · · 0 −a3

...
...

...
. . .

...
...

0 0 0 · · · 1 −am−1


.

For binary number systems, needing an expanding matrix H ∈ Zm×m with |det(H)| = 2, it
was shown (theorem 3.4 in [11]) that H has a complete digit set if and only if

(a) H is Z-similar to its companion matrix CH , i.e., there exists a matrix Q ∈ GL(m, Z),
the general linear group of m × m integer matrices with determinant ±1, such that
H = QCHQ−1.
and

(b) {0, e1} is a complete digit set for CH , where e1 = (1, 0, 0, . . . , 0︸ ︷︷ ︸
m

)T , T denoting

transposition.

Moreover, it was shown that for any such CH for which {0, e1} is a complete digit set,
there exists a finitely generated commutative subgroup G(CH ) ⊂ GL(m, Z) such that every
complete digit set for CH is given as {0,Ge1} with G ∈ G(CH ). Moreover, if G ∈ G(CH ),
then

|det(G)| = 1 and GCH = CHG.



Spectral properties of higher-dimensional paperfolding and Rudin–Shapiro sequences 2603

In turn, all complete digit sets for H = QCHQ−1 are given by W = {0,QGe1},G ∈ G(CH ).
Thus, it is clear that all

[H,W ] = {(QCHQ−1, {0,QGe1})|Q ∈ GL(m, Z)},G ∈ G(CH )}
form a class of Z-similar binary number systems. We call (CH , {0, e1}) the companion
representative of this class. If (H1,W1) and (H2,W2) are in the same class, we denote this by

(H1,W1)
Z∼ (H2,W2).

Corollary 1.2. Let (Hi, {0, wi}), i = 1, 2 be binary number systems for Zm. (H1, {0, w1}) Z∼
(H2, {0, w2}) if and only if there exist Q,Q1 ∈ GL(m, Z) such that

(H2, {0, w2}) = (QH1Q
−1, {0,QUw1})

with U = Q1GQ−1
1 and G ∈ G(CH ). Moreover, it holds that H1U = UH1.

Proof.

(i) if: (H1, {0, w1}) and (H2, {0, w2}) belong to the same class then there exist a matrix CH

and matrices Qi ∈ GL(m, Z) such that Hi = QiCHQ−1
i , i = 1, 2. Let Q = Q2Q

−1
1 ,

then one computes that H2 = QH1Q
−1.

Furthermore, one has w1 = Q1G1e1 and w2 = Q2G2e1, where Gi ∈ G(CH ), i = 1, 2.
This yields w2 = Q2G2G

−1
1 Q−1

1 w1, and using the fact that Q = Q2Q
−1
1 , one gets

w2 = Q2Q
−1Q1G2G

−1
1 Q−1

1 = QUw1, as desired.
(ii) only if: since (H1, {0, w1}) is a binary number system there exists Q1 ∈ GL(m, Z) and a

companion matrix CH such that H1 = Q1CHQ−1
1 and w1 = Q1Ge1, with G ∈ G(CH ).

Let H2 = QH1Q
−1 and w2 = QUw1, with Q,Q1 ∈ GL(m, Z) and U ∈ Q1G(CH )Q−1

1 .
Then certainly, H2 = (QQ1)CH (QQ1)

−1 and using the expression for w1, we get

w2 = QUw1 = QQ1GQ−1
1 w1 = QQ1GQ−1

1 (Q1G1e1) = (QQ1)(GG1)e1,

with (GG1) ∈ G(CH ) and (QQ1) ∈ GL(m, Z). This proves that (H2, {0, w2}) belongs
to the same class as (H1, {0, w1}).

(iii) That H1U = UH1 follows from the fact that CHG = GCH or, using U = Q1GQ−1
1

which is equivalent to G = Q−1
1 UQ1, that

(
Q1CHQ−1

1

)
U = U

(
QCHQ−1

1

)
. Then use

the fact that Q1CHQ−1
1 = H1. �

In [11] one finds a list of binary number systems (CH , {0, e1}) and the corresponding generators
for the group G for dimensions m = 1, 2, . . . , 6. Let us just mention that the number of Z-
similar binary number system classes equals 1, 4, 4, 12, 7, 25 for dimension m = 1, 2, . . . , 6,
respectively. For m = 1, 2, every Z-similar class has only finitely many complete digit sets,
since G(CH ) is finite. If m � 3, then G(CH ) is infinite and therefore one has infinitely many
complete digit sets for every class.

The four Z-similarity classes of binary number systems for Z2, given by their companion
representatives, are

C1 =
(

0 −2
1 −2

)
C2 =

(
0 −2
1 −1

)
C3 =

(
0 −2
1 0

)
C4 =

(
0 −2
1 1

) (3)

and with complete digit set E = {0, e1} = {(0, 0)T , (1, 0)T }.
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We will also consider the Z2-binary number system

(H,E) =
((−1 −1

1 −1

)
, E

)
, (4)

which is Z-similar to (C1, E) as follows:

(H,E) = (
QHC1Q

−1
H , {0,QH e1}

)
, with QH =

(
1 −1
0 1

)
. (5)

Using the notion of Z-similarity, we introduce a stronger notion of similarity between
automatic sequences defined by binary number systems.

Definition 1.3. Let f1, f2 : Zm → C be (H1,W1)- and (H2,W2)-automatic sequences,
respectively, with (H1,W1) and (H2,W2) binary number systems for Zm. f1 and f2 are called
similar if

(i) f1 and f2 are automaton-similar (see definition 1.1),
(ii) ϑ(g)(0) = g(0) for all g ∈ ker(f1),

(iii) (H1,W1)
Z∼ (H2,W2).

Note that by (ii), similar sequences always have the same values. By (iii), see the later
theorem 2.1, it follows that similar sequences in Zm are related through a Z-linear
transformation of coordinates.

Since we are interested in the correlation and the spectral properties of the generalized
paperfolding and Rudin–Shapiro sequences, we introduce some necessary notions.

For a sequence f : Zm → C, the (auto)correlation function γff is generally defined as

γff (k) = lim
R→∞

1

vol(BR(0))

∑
x∈BR(0)∩Zm

f (x)f (x + k), (6)

for all k ∈ Zm, provided the limit exists. f denotes the complex conjugate of f ; vol(BR(0))

denotes the volume of a ball of radius R centred at 0 (in a proper norm). For two sequences
g, h : Zm → C, the correlation function is defined as

γgh(k) = lim
R→∞

1

vol(BR(0))

∑
x∈BR(0)∩Zm

g(x)h(x + k). (7)

The existence of the correlation functions γgh, where g, h belong to one of the kernels of the
m-dimensional paperfolding or Rudin–Shapiro sequence, has been established in [12] under
the additional condition that there exists an invertible m × m matrix P ∈ Rm×m such that
P −1HP equals a block-diagonal matrix


 = diag(λ1, λ2, . . . , λs,
1,
2, . . . , 
t ), (8)

where the |λj | > 1 correspond to the real eigenvalues of H and the 
j are 2 × 2 matrices of
the form


j =
(

aj −bj

bj aj

)
,

where aj , bj ∈ R and |det(
j )| = a2
j + b2

j > 1. 
j corresponds to a pair of complex
eigenvalues (aj ± bj i) of H.

Let R = (R1, R2, . . . , Rs, Rs+1, . . . , Rs+t ) have positive real entries, and let C(R) denote
the cylinder

C(R) = {(x1, . . . , xs)| |xi | � Ri, i = 1, . . . , s}
× {

(x1, y1, . . . , xt , yt )
∣∣x2

j + y2
j � R2

s+j , j = 1, . . . , t
}
.
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PC(R) is the cylinder resulting from the transformation of the cylinder C(R) under P. As
explained in [12], it is advantageous to consider equations (6), (7) with the cylinders PC(R)

as the proper balls, yielding

γgh(k) = lim
R⇒∞

1

vol(PC(R))

∑
x∈BR(0)∩Zm

g(x)h(x + k),

where R ⇒ ∞ means that all Ri go simultaneously but independently to ∞.
From now on we assume that every expanding H with |det(H)| = 2 is equivalent to a

diagonal matrix as in equation (8).

Remark. For all binary number systems (CH , {0, e1}) listed in [11] there exists a matrix
P ∈ Rm×m such that PCHP −1 is of the required diagonal form (8). This is a consequence
of the fact that the characteristic polynomials of these matrices CH all have simple roots

(in C). This is also the case for (H,W)
Z∼ (CH , {0, e1}) as H has the same characteristic

equation as CH .

We now recall some elementary facts concerning the spectrum of an m-dimensional
sequence.

We consider the correlation function, provided it exists, as a weighted Dirac comb (or
tempered distribution) in Rm, see [13] chapter 6, i.e.,

γff :=
∑
x∈Zm

γff (x)δx,

where δx is the Dirac impulse at x. Viewing the correlation function as a tempered distribution
also justifies the name correlation measure for the tempered distribution γff . Then the
spectrum of f is the m-dimensional Fourier-transform γ̂ff of the correlation measure γff , [7].
It is itself a tempered distribution [13]. With ν ∈ Rm, this gives

γ̂ff (ν) =
∑
k∈Zm

exp(−2π i νT kγff (k))

in distribution sense. Note that γ̂ff (ν) = γ̂ff (ν + θ), for any θ ∈ Zm. Thus, it suffices to
consider the spectrum only for ν ∈ [0, 1)m, see also [14].

2. Basic relations between similar sequences and their correlations and spectra

In this section, it will be shown that there is a simple relationship between the correlation
functions and spectra of similar automatic sequences.

The following theorem states that two similar sequences are Z-linear ‘rearrangements’ of
each other.

Theorem 2.1. Let f1, f2 : Zm → C be similar sequences that are (H1, {0, w1})- and
(H2, {0, w2})-automatic, respectively. Let, according to corollary 1.2, (H2, {0, w2}) =
(QH1Q

−1, {0,QUw1}) and let R = QU . Then,

f2(x) = f1(R
−1x) for all x ∈ Zm.

Proof. This follows from the fact that the bijections ϑ : kerH1,W1(f1) → kerH2,W2(f2) and
ξ : W1 → W2 defining the automaton-similarity between f1 and f2 are given by

ϑ : CZm → CZm

: ϑ(h)(x) = h(R−1x)
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for all h ∈ ker(f1), and

ξ : {0, w1} → {0, w2} : ξ(0) = 0 and ξ(w1) = w2 = Rw1.

Indeed, it holds that, for all h ∈ ker(f1)

∂H2,0(ϑ(h))(x) = ϑ(h)(H2x) = h(R−1H2x) = h(U−1Q−1QH1Q
−1x) = h(U−1H1Q

−1x)

= h(H1U
−1Q−1x) = h(H1R

−1x) = ϑ
(
∂H1,0(h)

)
(x),

where use has been made of the fact that UH1 = H1U (corollary 1.2). In the same way,

∂H2,w2(ϑ(h))(x) = ϑ(h)(H2x + w2) = h(R−1H2x + R−1w2) = h(U−1Q−1QH1Q
−1x + w1)

= h(U−1H1Q
−1x + w1) = h(H1U

−1Q−1x + w1) = h(H1R
−1x + w1)

= ϑ(∂H1,w1(h))(x). �

The next theorem gives an analogous result for the correlation functions of similar
sequences.

Theorem 2.2. Let f1, f2 : Zm → C be similar sequences that are (H1, {0, w1})- and
(H2, {0, w2})-automatic, respectively. Let, according to theorem 2.1, ϑ : kerH1,W1(f1) →
kerH2,W2(f2) be given by

ϑ(h)(x) = h(R−1x).

Then, it holds that

γϑ(g)ϑ(h)(Rk) = γgh(k) for all k ∈ Zm.

Proof. Let P ∈ GL(m, R) be such that P −1HP = 
 is of the diagonal form as in
equation (8). Then, recalling the definition from the introduction, the correlation function
of g, h ∈ kerH1,W1(f1) is given by

γgh(k) = lim
R⇒∞

1

vol(PC(R))

∑
x∈PC(R)∩Zm

g(x)h(x + k)

= lim
R⇒∞

1

vol(PC(R))

∑
x∈PC(R)∩Zm

ϑ(g)(Rx)ϑ(h)(R(x + k))

= lim
R⇒∞

1

vol(PC(R))

∑
y∈R(PC(R)∩Zm)

ϑ(g)(y)ϑ(h)(y + Rk).

Since |det(R)| = 1, the last expression can be written as

lim
R⇒∞

1

vol(RPC(R))

∑
y∈RPC(R)∩Zm

ϑ(h1)(y)ϑ(h2)(y + Rk). (9)

By the fact that R = QU , and UH1 = H1U (see corollary 1.2), it follows that
P −1R−1H2RP = P −1U−1Q−1H2QUP = P −1U−1H1UP = P −1H1P = 
. This shows
that (RP )−1H2RP = 
, i.e., that RPC(R) is a proper cylinder for H2. Thus, expression (9)
is equal to γϑ(g)ϑ(h)(Rk), and the assertion is proven. �

As far as the Fourier transform γ̂ ff of the correlation measure γff is concerned, we have

Theorem 2.3. Let f1 and f2 be similar sequences that are (H1, {0, w1})- and (H2, {0, w2})-
automatic, respectively, and let R be as in theorem 2.1. Then,

γ̂ f2f2(ν) = γ̂ f1f1(R
T ν), ν ∈ Rm.
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Proof. The correlation measures of f1 and f2 are

γfifi
(x) =

∑
x∈Zm

γfifi
(x)δx, i = 1, 2.

Due to theorem 2.2, one has γf1f1(k) = γf2f2(Rk), k ∈ Zm for the correlation functions.
This relation remains true if one considers the associated correlation measures γf1f1(x) =
γf2f2(Rx), x ∈ Rm. Interpreting γf2f2(Rx) as

(
γf2f2 ◦ R

)
(x) allows to apply formula (7),

p 144 in [15]. Reinterpreting this formula in our notation, taking into account that |det(R)| = 1,
yields the desired assertion for the Fourier transforms. �

As a consequence of theorems 2.1, 2.2, 2.3 it is clear that it is sufficient to calculate the
correlation function and spectrum of one representative in each class of similar sequences,
the companion representatives for example. The correlation function and the spectrum of any
similar sequence can be obtained by a linear coordinate transformation.

The next result, the proof of which is rather trivial, shows how the correlation function
of a sequence changes if the values are changed by the map θ(z) = αz + β, α, β ∈ C, and
α �= 0. It features the average µf of a sequence f : Zm → C, defined as the following limit
(provided it exists):

µf = lim
R⇒∞

1

vol(PC(R))

∑
x∈PC(R)∩Zm

f (x).

Lemma 2.4. Let f : Zm → C, and let g(x) = αf (x) + β, x ∈ Zm. Then,

γgg(k) = α2γff (k) + (2αβµf + β2) (10)

γ̂ gg = α2γ̂ ff + (2αβµf + β2)
∑
ν∈Zm

δν. (11)

Note that g is automaton-similar to f . In particular, if g = −f , then the above lemma shows
that g has the same correlation function as f .

We recall from [12] how to compute the correlation function of an (H,W)-automatic
sequence f when (H,W) is a binary number system. If γgh(k) denotes the correlation function
between any two sequences g and h in the kernel of f and �f (k) denotes the (ker(f )×ker(f ))-
vector with components γgh, g, h ∈ ker(f ), the correlation function satisfies the equations

�f (Hk) = 1
2 (A0 ⊗ A0 + Aw ⊗ Aw)�f (k), (12)

�f (Hk + w) = 1
2 (A0 ⊗ Aw)�f (k) + 1

2 (Aw ⊗ A0)�f (k + 2H−1w), (13)

for all k ∈ Zm. In this equation, A0 and Aw are the decimation matrices, and ⊗ denotes the
Kronecker product. In [12], it was also shown that �f (k) exists for all k ∈ Zm, if �f (0) exists.
Also a procedure was presented to calculate �f (k) from �f (0).

3. Correlation and spectral properties of paperfolding sequences

In this section, we consider the automaton-similarity class of all ±1-valued paperfolding
sequences. That is, all sequences f which are obtained by the automaton in figure 1 together
with the sequences −f .

Figure 2 displays the two-dimensional paperfolding sequences based on the companion
representatives (Cj , E), j = 1, 2, 3, 4, of the four different Z-similarity classes of binary
number systems in Z2, see (3). We will derive an explicit formula for the correlation function
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Z2-grid

(a)

(c)

(e) (f)

(b)

(d)

Figure 2. (a)–(d) The two-dimensional ±1-paperfolding sequences based on the four companion
Z2-binary number systems (Cj , E), j = 1, 2, 3, 4, in that order. The display domain is [−40, 40]2.
White pixels on the Z2-grid, see the enlargement (f ), correspond to +1, grid points without a white
pixel correspond to −1 (or 0 in case {0, 1}-paperfolding sets are considered). Part(e) displays

the paperfolding sequence for the number system (H, E)
Z∼ (C1, E) (see (4)). By application of

theorem 2.1, it can be obtained from (a) by the Z-linear coordinate transformation R = QH in
equation (5). Observe that, although (a) and (c) look very similar, they cannot be transformed in
each other. Neither can (d) and (b), although (d) looks similar to a left–right reflection of (b).

of all ±1-valued paperfolding sequences. Furthermore, we will show that the spectrum, i.e.,
the Fourier transform of the correlation measure, is purely discrete and of the form

∞∑
n=2

cn

∑
ν∈Ln

δν,
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where cn depends only on n, i.e., not on H or W or the dimension m. The sets Ln are
m-dimensional point lattices depending on H alone.

The kernel elements for the ±1 paperfolding sequence p are given by {p, g, 1,−1},
see figure 1, where ±1 are the constant sequences with value 1 and −1, respectively. The
corresponding �p in equations (12), (13) is the 16-component vector

(γpp, γpg, γp1, γp(−1), γgp, γgg, γg1, γg(−1), . . . , γ(−1)p, γ(−1)g, γ(−1)1, γ(−1)(−1))
T .

Since the constant sequences 1 and −1 form a sink of the kernel graph, theorem 3.6 in [12]
implies that all these correlation functions exist. Indeed, we obviously have, for all k ∈ Zm,

γ11(k) = γ(−1)(−1)(k) = 1 and γ1(−1)(k) = γ(−1)1(k) = −1.

Note also that, for all k ∈ Zm, γ1p(k) = γp1(k) = µp, the average of the sequence p,
and that γ1g(k) = γg1(k) = µg , the average of the sequence g. Moreover, one has that
γ(−1)p(k) = γp(−1)(k) = µ−p = −µp and γ1g(k) = γg1(k) = µ−g = −µg .

As the paperfolding sequence takes the values ±1, it is clear that

γpp(0) = lim
R→∞

1

vol(PC(R))

∑
x∈PC(R)∩Zm

p2(x) = 1 (14)

γgg(0) = lim
R→∞

1

vol(PC(R))

∑
x∈PC(R)∩Zm

g2(x) = 1. (15)

Simplifying equations (12) and (13) by taking into account the particular γ -values from above,
these equations become

γpp(Hk) = 1
2 (γpp(k) + γgg(k)) (16)

γpp(Hk + w) = 0 (17)

γgg(Hk) = 1 (18)

γgg(Hk + w) = −1 (19)

γgp(Hk) = 0 (20)

γpg(Hk) = 0 (21)

µp = 0 (22)

µg = 0. (23)

The first four of these recursive equations allow the computation of the correlation function
γpp(k). An inspection of (17), and of (16) together with (17, 19), already indicates that γpp is
constant on point lattices of the form Hn(Hk+w), k ∈ Zm, n ∈ N. This observation motivates
the following partitioning of the point lattice Zm.

First observe that, because the point lattice Zm partitions as

Zm = HZm ∪ (HZm + w), (24)

the point lattice HnZm partitions as

HnZm = Hn+1Zm ∪ (Hn+1Zm + Hnw). (25)

For n � 1, let

Ln = HnZm + Hn−1w.



2610 A Barbé and F von Haeseler

Then, applying (25) iteratively, starting from (24), it follows that Zm partitions as

Zm = {0} ∪
∞⋃
i=1

Li .

Theorem 3.1. The correlation function of an (H,W)-automatic paperfolding sequence p with
values ±1 is given by

γpp(0) = 1 (26)

γpp(k) = 0 if k ∈ L1 (27)

γpp(k) = 2n−1 − 3

2n−1
if k ∈ Ln, n � 2. (28)

Proof. Equation (26) follows from (14) and (27) from (17).
Now, let k ∈ Ln, i.e., k = Hnl + Hn−1w for some l ∈ Zm, n � 2. Then, according to

(16), we get (step 1)

γpp(k) = 1
2 [γpp(Hn−1l + Hn−2w) + γgg(H

n−1l + Hn−2w)].

The right most term equals 1, see (18). Applying (16) to the leftmost term gives (step 2)

γpp(k) = 1
2

[
1
2 [γpp(Hn−2l + Hn−3w) + γgg(H

n−2l + Hn−3w)] + 1
]
.

Again, γgg(H
n−2l + Hn−3w) = 1. Iterating further, we find after step (n − 1)

γpp(k) = 1
2

[
1
2

[
1
2 · · · 1

2

[
1
2 [γpp(Hl + w) + γgg(H l + w)] + 1] · · · + 1

]
+ 1

]
.

Using the fact that γpp(Hl + w) = 0, and γgg(H l + w) = −1, see (17) and (19), we see
that this amounts to iterating the recursion st+1 = 1

2 [st + 1] for (n − 1) times, starting from
s1 = 1

2 (0 − 1) = − 1
2 . This gives the desired expression (28). �

Theorem 3.1 states that the correlation function is constant on the disjoint sublattices Ln. The
constant value only depends on the lattice-index n, and not on the dimension m or on (H,W).
The lattices Ln themselves depend on m and H.

Figure 3 shows the different lattices Li for the two-dimensional paperfolding sequences
displayed in figure 2.

For similar paperfolding sequences p1 and p2, based on the Z-similar binary number
systems (H1, {0, w1}) and (H2, {0, w2}), respectively, the lattices Li for p1 and p2, denoted by
Lp1

i and Lp2
i , respectively, relate by the consequence of theorem 2.2 as

Lp2
i = RLp1

i .

As already mentioned, the spectrum is the Fourier transform of the correlation measure
γpp = ∑

x∈Zm γ (x)δx , regarded as a tempered distribution. In order to compute the Fourier
transform, we state two technical lemmata.

Lemma 3.2 ([16] theorem 2.6). Let B ∈ Rm×m be a matrix of rank m. The Fourier transform
of the Dirac comb LB = ∑

x∈BZm δx is given by

L̂B = |det(B)−1|
∑

ν∈B−T Zm

δν,

where B−T is the transposed inverse of B. The shifted Dirac comb LB+σ = ∑
x∈BZm+σ δx,

σ ∈ Rm, has Fourier transform

L̂B+σ = |det(B)−1|
∑

ν∈B−T Zm

exp(−2π iνT σ )δν.
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L1 L2 L3 L4 L5 L6 L7 L8{0}

(a) (b)

(d)(c)

Figure 3. The lattices Lj , j = 1, . . . , 8, restricted on the domain [−10, 10]2. The correlation
function of the two-dimensional paperfolding sequences is constant on each Lj . (a): For the
companion binary number systems (C1, E) and (C3, E) (see (3)). The lattices Lj happen to
coincide for these two cases, although the number systems are not Z-similar. (b): For the binary

number system (H, E)
Z∼ (C1, E) (see (4)). The lattices in (b) can be obtained from (a) by a linear

transformation. (c) and (d) For the number systems (C2, E) and (C4, E), respectively. Observe
that both pictures are left–right (or up–down) reflections of each other.

Lemma 3.3. Let H ∈ Zm×m be such that |det(H)| = 2 and let w, k ∈ Zm,w �∈ HZm. Then
the following is true: k �∈ HT Zm if and only if

exp(−2π ikT H−1w) = −1.

Proof. Let �(k) = exp(−2π ikT H−1)w. Since |det(H)| = 2, �(k) = exp(−πkT Adj(H))w.
Since kT Adj(H)w is an integer for all k ∈ Zm, it follows that ±1 are the only possible values
for �. If k2 = k1 + HT ξ , where k1, k2, ξ ∈ Zm, then it follows that

�(k2) = exp(−2π i(k1 + (HT ξ))T H−1w) = ψ(k1) exp(−2π i(HT ξ)T H−1w = �(k1),

due to the fact that (HT ξ)T H−1w = ξT (HH−1)w ∈ Z. As �(0) = 1, it follows that,
if k ∈ HT Zm, then �(k) = 1. Since � is constant on residue classes mod HT and since
|det(HT )| = 2, it suffices to show that �(k) = −1 for one k �∈ HT Zm.
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Since w �∈ HZm, at least one component, say the j th one, of H−1w = Adj(H)w/ det(HT )

is of the form z + 1/2 (z ∈ Z). For ej the j th unit vector in Zm then one computes that
�(ej ) = −1. It follows that ej �∈ HZm and also that �(k) = −1 for all k �∈ HT Zm. �

We are now prepared to compute the spectrum of the paperfolding sequences.

Theorem 3.4. The spectrum of an (H,W)-automatic paperfolding sequence p with values
±1 is given by

γ̂ pp =
∞∑

j=2

1

4j−1

∑
ν∈Lj

δν,

where Lj = H−jT (HT Zm + w).

Proof. Due to (24), the correlation measure (as tempered distribution) γpp = ∑
x∈Zm γpp(x)δx

can be written as

γpp =
∑
x∈Zm

γpp(Hx)δHx +
∑
x∈Zm

γpp(Hx + w)δHx+w.

Invoking relation (17), this reduces to

γpp =
∑
x∈Zm

γpp(Hx)δHx.

By equation (16) this sum can be written as

γpp = 1

2

∑
x∈Zm

γpp(x)δHx +
1

2

∑
x∈Zm

γgg(x)δHx. (29)

By (25), the first sum can be split as∑
x∈Zm

γpp(Hx)δH 2x +
∑
x∈Zm

γpp(Hx + w)δH 2x+Hw.

Again, due to (17), the second term equals 0, and thus, (29) becomes

γpp = 1

2

∑
x∈Zm

γpp(Hx)δH 2x +
1

2

∑
x∈Zm

γgg(x)δHx.

Using the splitting of γpp(Hx) as given in (16) again, one arrives at

γpp = 1

4

∑
x∈Zm

γpp(x)δH 2x +
1

4

∑
x∈Zm

γgg(x)δH 2x +
1

2

∑
x∈Zm

γgg(x)δHx.

An N-time application of this splitting gives

γpp = 1

2N

∑
x∈Zm

γpp(x)δHN x +
N∑

j=1

(
1

2j

∑
x∈Zm

γgg(x)δHj x

)
.

Note that

lim
N→∞

1

2N

∑
x∈Zm

γpp(x)δHN x = 0

in distribution sense. Hence,

γpp = lim
N→∞

N∑
j=1

(
1

2j

∑
x∈Zm

γgg(x)δHj x

)
.
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Thus, the spectrum γ̂ pp is given by the Fourier transform

γ̂ pp =
̂

lim
N→∞

N∑
j=1

(
1

2j

∑
x∈Zm

γgg(x)δHj x

)
Setting

QN =
N∑

j=1

(
1

2j

∑
x∈Zm

γgg(x)δHj x

)
,

it holds that

γ̂ pp = lim
N→∞

Q̂N, (30)

in the distribution sense. In order to calculate Q̂N , we use (24) to obtain∑
x∈Zm

γgg(x)δHj x =
∑
x∈Zm

γgg(Hx)δHj+1x +
∑
x∈Zm

γgg(Hx + w)δHj (Hx+w).

Using equations (18) and (19) this becomes∑
x∈Zm

γgg(x)δHj x =
∑
x∈Zm

(δHj+1x − δHj (Hx+w)).

The Fourier transform of this Dirac comb can be obtained by applying lemma 3.2 with
B = Hj+1 and σ = Hjw. This gives the Fourier transform

Q̂N =
N∑

j=1

1

22j+1

∑
ν∈H−(j+1)T Zm

(1 − exp(−2π iνT Hjw))δν.

Thus, (30) becomes

γ̂ pp =
∞∑

j=1

1

22j+1

∑
ν∈H−(j+1)T Zm

(1 − exp(−2π iνT Hjw))δν. (31)

In other words, γ̂ pp is discrete with (possible) peaks at H−jT Zm, j � 2. We will now calculate
the weight of the Dirac peaks at these positions.

For ν ∈ Zm, the above formula shows that γ̂ ν(0) = 0, i.e., the spectrum has no peaks on
the lattice Zm.

Now let ν = H−j0T (HT η + w) ∈ H−j0T Zm for an η ∈ Zm and a j0 � 2, then there are
two possibilities:

(a) ν �∈ H−jT Zm for j < j0, if not then H−j0T (HT η + w) ∈ H−jT Zm, or HT η + w ∈
H(j0−j)T Zm with (j0 − j) � 0, which contradicts the fact that w �∈ HZm.

(b) ν ∈ H−jT Zm for all j � j0, as H−kT Zm ⊂ H−lT Zm for k < l.

Then it follows from (31) that the sum of the peak intensities at this ν is given by
∞∑

l=j0−1

1

22(j0+l−1)+1
(1 − exp(−2π i(H−j0T (HT η + w))T Hj0+l−1w))

=
∞∑
l=0

1

22(l+j0−1)+1
(1 − exp(−2π i(H−j0T (HT η + w))T H l+j0−1w)). (32)

The exponent in this expression can be written as −2π i(ηT H + wT )H lH−1w. By lemma 3.3,
it follows that

1 − exp(−2π i(ηT H + wT )H lH−1w) =
{

2 if l = 0
0 otherwise.
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Using this in (32) shows that the weight of the Dirac peak at ν = H−j0T (HT η + w) equals
1/22(j0−1), independent of η. Note further that the set {x|x = H−j0T (HT η + w), η ∈ Zm},
j0 � 2 is precisely the point lattice Lj0 , and therefore

γ̂ pp =
∞∑

j=2

1

4j−1

∑
ν∈Lj

δν .

�

Theorem 3.4 reflects the result in [1], p 345, for the classical ±1-paperfolding sequence
over N, and gives a generalization to the class of automaton-similar ±1-valued paperfolding
sequences.

If g is automaton-similar to a ±1-paperfolding sequence, then one has

Corollary 3.5. Let g be automaton-similar to a paperfolding sequence p with values ±1, i.e.,
g is given by

g(x) =
{
a if p(x) = −1
b if p(x) = +1

with a, b ∈ C, a �= b.

The correlation function of g is

γgg(k) =
(

b − a

2

)2

γpp(k) +

(
a + b

2

)2

and the spectrum of g is

γ̂ gg =
(

b − a

2

)2

γ̂ pp +

(
a + b

2

)2 ∑
x∈Zm

δx.

Proof. Define θ : C → C as θ(z) = (
b−a

2

)
z +

(
a+b

2

)
. Then θ(−1) = a and θ(1) = b,

and g(x) = (
b−a

2

)
f (x) +

(
a+b

2

)
. The assertion now follows from lemma 2.4, with µp = 0,

see (22). �

Thus, the spectrum of a sequence which is automaton-similar but not similar to a ±1-
paperfolding sequence has additional peaks on the lattice Zm. A particular example is obtained
by replacing −1 by 0 and keeping the +1. Then the resulting sequence p′ is the characteristic
sequence of the Delone set P = {x|p′(x) = 1} ⊂ Z2, see [8] for details. P will be called the
paperfolding set. The correlation function and diffraction spectrum of this set are then given
by

γp′p′(k) = 1

4
γpp(k) +

1

4
for k ∈ Zm

γ̂ p′p′ = 1

4
γ̂ pp +

1

4

∑
ν∈Zm

δν.

Also note that here the lattices Lp1
i and Lp2

i for two similar paperfolding sequences p1

and p2 relate by application of theorem 2.3 as

Lp2
i = R−T Lp1

i .

Note also that on the lattice L1 = Zm + H−T w no diffraction peaks appear for any of the
paperfolding sequences.

Figure 4 gives an idea about the diffraction spectrum of the paperfolding sequences
displayed in figure 2.
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Figure 4. The lattices Lj , j = 2, . . . 8, restricted to the interval [0, 1]2, on which the diffraction
spectrum of the ±1-paperfolding sequences, displayed in figure 2, is constant. The size of the
circles increases with the weight of the peaks. (a) For the binary number systems (C1, E) and

(C3, E). (b) For the binary number system (H, E)
Z∼ (C1, E) (see(4)). The lattices in (b) can be

obtained from (a) by a linear transformation. (c) and (d) For the binary number systems (C2, E)

and (C4, E), respectively. Observe that both pictures are left–right (or up–down) reflections of
each other ( just as for the correlation lattices).

4. Correlation and spectral properties of Rudin–Shapiro sequences

In this section,we study the automaton-similarity class of the Rudin–Shapiro sequence. Like
in the case of the paperfolding sequence,we begin with m-dimensional ±1-valued Rudin–
Shapiro sequences. We shall show that the spectral measure of such a sequence is always the
Lebesgue measure on Rm.

The decimation matrices and the kernel graph for an (H,W)-automatic Rudin–Shapiro
sequence r with values ±1 are displayed in figure 1. One can easily see that r is also given by
the recursive relations

r(Hx) = r(x), r(H 2x + w) = r(x), r(H 2x + Hw + w) = −r(Hx + w),

for x ∈ Zm and with r(0) = −1. Note that these relations also hold for the automaton-
similar sequence −r . Using this, one sees that the four kernel elements r, s, t, u are related by
t = −s, u = −r . The corresponding correlation vector �r in (12) and (13) is the 16-component
vector

(γrr , γrs, γrt , γru, γsr , γss, γst , γsu, γtr , γts , γtt , γtu, γur , γus, γut , γuu)
T .
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Figure 5. The graphs G and G�f for an (H, W)-automatic sequence f with H = (−1
1

−1
−1

)
and

W = {(0, 0)T , (1, 0)T }.

It was already derived in [12] that �r(0) exists and equals

�r(0) = (1, 0, 0,−1, 0, 1,−1, 0, 0,−1, 1, 0,−1, 0, 0, 1)T , (33)

and that, as a consequence, �r(k) exists for all k ∈ Zm and can be calculated using
equations (12) and (13).

Theorem 4.1. Any m-dimensional ±1-valued Rudin–Shapiro sequence has the correlation
function

γrr (0) = 1

γrr (k) = 0 for k �= 0.

Correspondingly, the diffraction spectrum is absolutely continuous, i.e., for ν ∈ Rm,

γ̂ rr (ν) = 1.

Proof. Rewrite equations (12) and (13) in the form

�f (k) = 1
2 (A0 ⊗ A0 + Aw ⊗ Aw)�f (H−1k) if k ∈ HZm

�f (k) = 1
2 (A0 ⊗ Aw)�f (H−1(k − w)) + 1

2 (Aw ⊗ A0)�f (H−1(k + w)) if k ∈ HZm + w.

Or, for further convenience, we write this as

�f (k) = R�f (H−1k) if k ∈ HZm,

�f (k) = S�f (H−1(k − w)) + T �f (H−1(k + w)) if k ∈ HZm + w.
(34)

This shows that �f (k) depends either on �f (H−1k) or on �f (H−1(k − w)) and �f (H−1(k +
w)). One can display these dependences in a directed graph G with vertices k ∈ Zm that have
one incoming edge from H−1k if k ∈ HZm, and two incoming edges, one from H−1(k − w)

and the other from H−1(k + w) if k ∈ HZm + w.
An illustration is given in figure 5(a) for the binary number system (H,E) given in (4).

The graph in the illustration has two strongly connected components (recall that a strongly
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Γf (0)

Γf ( )w Γf ( H    )2
-1
w

Γf (- H    )2
-1
wΓf (- )w

R

S

ST

T

Figure 6. The universal part of the dependency graph G� for automatic sequences based on binary
number systems.

connected component is a subgraph such that for any two vertices a, b there exists a directed
path from a to b in this subgraph).

Note that {0} always forms a strongly connected component. In the case at hand there is a
second strongly connected component. The vertices � of the strongly connected components
are given by the points

ξ1 = (1, 0)T ξ2 = (0, 1)T ξ3 = (−1, 0)T ξ4 = (0,−1)T

ξ5 = (1, 1)T ξ6 = (−1,−1)T ξ7 = (0, 0)T .

The graph G induces a second graph G�f
with �f (k) as vertices, and directed edges labelled

R, S, T which express the proper multiplications in (34), see figure 5(b).
As shown in [12], the existence of a finite number of finite strongly connected components

is a universal feature for any number system (H,W). For an (H,W)-automatic sequence f

it was shown that, if � denotes the vertices of all connected components, then all �f (k) for
k �∈ � can be calculated from the values at k ∈ � in a recursive way. Let �∗ = �\{0} and
consider (�f (k))ξ∈�∗ as a �∗ × (ker(f ) × ker(f ))-vector. Then (�f (k))k∈�∗ is the unique
fixed point of the contractive map (cf [12] equation (29))

x �→ B�x + C��f (0), (35)

where B� is the �∗ × (ker(f ) × ker(f ))-block matrix reflecting the corresponding transfers
between �f (ξ) and �f (H−1ξ) or �f (H−1(ξ − w)) and �f (H−1(ξ + w)) as displayed in the
graph G�f

.
C��f (0) corresponds to the connections between �f (0) and all other �f (ξ), ξ ∈ �∗. For

binary number systems (H,W), this connection is universal and is depicted in figure 6. It
corresponds to the equations

�f (0) = R�f (0) (36)

�f (w) = S�f (0) + T �f (2H−1w) (37)

�f (−w) = S�f (−2H−1w) + T �f (0). (38)

There are no other links between �f (0) and the other �f (k), k ∈ Zm\{0}. The last two of these
equations correspond to C��f (0) in (35).

We apply this to the Rudin–Shapiro sequence r. The crucial point is that for any ±1
sequence in the Rudin–Shapiro class the following equations hold:

S�r(0) = 0 and T �r(0) = 0, (39)

with S and T as given in (33). Since the Rudin–Shapiro sequence satisfies (39) it follows that
in equations (37) and (38) the values of �f (±w) are independent of �r(0). This implies that
C��r(0) = 0. Then (35) becomes the contracting map

x �→ B�x,
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and (�r(ξ))ξ∈�∗ equals the unique fixed point x∗ = 0 of this map. Thus �r(ξ) = 0 for
ξ ∈ �∗, and as all other �r(k) with k /∈ �∗ are determined by �r(ξ), ξ ∈ �∗ it follows that
�r(k) = 0, and thus also that γrr (k) = 0, for all k ∈ Zm\{0}. As we already know that
γrr (0) = 1, this proves the correlation part of the theorem. The correlation measure is thus a
Dirac impulse at 0, and hence the spectrum has constant value 1. �

Remark. It also follows from the proof of the above theorem that all kernel elements of
r, namely the sequences s, t = −s, u = −r , have the same autocorrelation function and
spectrum as r. As for the crosscorrelation functions, it is clear that γrs(k) = γsr (k) =
γrt (k) = γtr (k) = γsu(k) = γus(k) = γut (k) = γtu(k) = 0 for all k ∈ Zm and that
γru(k) = γur(k) = γst (k) = γts(k) = −1 if k = 0, 0 if k �= 0.

The result of theorem 4.1 also generalizes a similar result for the one-dimensional Rudin–
Shapiro sequence defined on N, see [18] giving credit to Kamae.

Corollary 4.2. Let g be automaton-similar to a ±1-valued Rudin–Shapiro sequence r, i.e., g

is given by

g(x) =
{
a if r(x) = −1
b if r(x) = +1

with a, b ∈ C, a �= b.

The correlation function of g is

γgg(0) =
(

b − a

2

)2

γrr (0) +

(
a + b

2

)2

for k = 0

γgg(k) =
(

a + b

2

)2

for k ∈ Zm\{0}.

and the spectrum of g is

γ̂ gg =
(

b − a

2

)2

+

(
a + b

2

)2 ∑
x∈Zm

δx.

The proof is similar to the proof of corollary 3.5 and uses the nontrivial result that the average
µr of any ±1-valued sequence in the automaton-similarity class of Rudin–Shapiro sequences
satisfies µr = 0, see [17].

If r ′ is the Rudin–Shapiro sequence obtained from r by replacing −1 by 0 while keeping
the +1-value, then r ′ can be considered as the characteristic sequence of the Delone set
R = {x ∈ Zm|r ′(x) = 1} which can be named Rudin–Shapiro set. Corollary 4.2 gives

γr ′r ′(0) = 1

2
, γr ′r ′(k) = 1

4
for k ∈ Zm\{0}

γ̂ r ′r ′ = 1

4
+

1

4

∑
ν∈Zm

δν.

By the fact that the ±1-valued Rudin–Shapiro sequences have the same correlation
function and spectrum as a pure i.i.d. random sequence with values ±1, it has often been said,
at least for the one-dimensional case, that this deterministic Rudin–Shapiro sequence mimicks
randomness (is a pseudo-random sequence), see [1] and the references therein. Although
a plain graphical representation of a one-dimensional Rudin–Shapiro sequence gives no
particular visual indication about its nonrandomness, a glimpse at the graphical representation
of higher dimensional Rudin–Shapiro sequence hints at the presence of a structure which is
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(e) (f)

(d)(c)

(a) (b)

Figure 7. (a)–(d) The two-dimensional Rudin–Shapiro sequences based on the four canonical
Z2-binary number systems (Cj , E), j = 1, 2, 3, 4, in that order (see (3)). Similar representation

as in figure 2. Part (e) displays the Rudin–Shapiro set for the number system (H, E)
Z∼ (C1, E)

(see (4)). It means that (e) can be obtained from (a) by a Z-linear coordinate transformation
(cf theorem 2.1, with R = QH as given in (4)). (f ) A completely random pattern.

certainly nonrandom. This is demonstrated in figure 7 displaying the two-dimensional {0, 1}-
valued Rudin–Shapiro sequences (sets) for the companion binary number systems (Cj , E)

and (H,E) in Z2, together with a random pattern. The Rudin–Shapiro sequences have some
‘quasi-periodicity’ or long-range order along certain directions. This becomes even clearer
when we compare the sequence with a shifted version of itself in a so-called (h, v)-shift-
coincidence pattern. For a (0, 1)-valued two-dimensional sequence r, and h, v ∈ Z, it is
defined as rh,v(x, y) = |r(x, y) − r(x + h, y + v)| which is 0 if r(x, y) and r(x + h, y + v)
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(a)

(c)

(f)(e)

(d)

(b)

Figure 8. Some shift-coincidence patterns rh,v for the Rudin–Shapiro sequence r in figure 7(a).
Graphical representation as illustrated in figure 2(f). Black areas indicate coincidences between r
and its (h, v)-shifted version, white areas anti-coincidences. (a) (h, v) = (3, 0); (b) (h, v) = (4, 0);
(c) (h, v) = (8, 0); ( d)(h, v) = (16, 0); (e)(h, v) = (3, 7); (f) (h, v) = (52, 2).

have the same value (or have coinciding values), and otherwise 1. Figure 8 shows a few
shift-coincidence patterns for the Rudin–Shapiro sequence in figure 7(a). All these patterns,
no matter what the shift is, uncover a long-range correlation in the underlying Rudin–Shapiro
sequence. For (h, 0)-, (0, v)- and (h, v)-shifts with h = v = 2k , the black coincidence areas
and the white anti-coincidence areas increase in size when k increases (compare (b), (c), (d)).
The fact that the correlation function satisfies γrr (k) = 0 for k ∈ Z2\{0} then means that
the number of coincidences equals the number of anti-coincidences, no matter what the shifts
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(h, v) are. This also holds for the higher-dimensional cases, where a similar shift-coincidence
sequence can be considered.

Conclusion, open questions. We have shown that the elements in the automaton-similar
class of the ±1-paperfolding sequence have essentially the same discrete spectrum. For the
sequences in the automaton-similar class of the ±1-Rudin–Shapiro sequence, the spectral
measure is essentially the Lebesgue measure. This could suggest that the spectral properties
of automaton-similar sequences only depend on the structure of the underlying automaton.
However, this is not true. As preliminary work on the automaton-similarity class of the Thue–
Morse sequence indicates, there are two possible spectra for this case. Depending on the
binary number system, a Thue–Morse sequence may either be periodic, inducing a discrete
spectrum, or it may have a singular continuous spectrum like the ±1-Thue–Morse sequence
over N. Details are subject of a forthcoming paper.

A closer inspection of the proof of theorem 3.4 reveals, letting aside a few technicalities,
that any automatic sequence whose kernel graph has a sink that corresponds to kernel graphs
of periodic sequences has a purely discrete spectrum.

On the other hand, the situation for the Rudin–Shapiro class seems to be extremely
singular. The reason for the Lebesgue measure to be the spectrum lies in the validity of
the ‘uncoupling’ condition (39). So far no automatic sequence (based on binary number
systems), besides those of the Rudin–Shapiro class studied above, has been found for which the
‘uncoupling’ condition (39) holds. It remains an open question whether there are any. Further
investigations are needed in order to find out whether candidates can be found among possible
higher-dimensional versions of the one-dimensional generalized Rudin–Shapiro sequences
presented in [19, 20].
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[2] Queffélec M 1987 Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics vol 1294)
(Berlin: Springer)
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[17] Barbé A and von Haeseler F 2004 Averages of automatic sequences SCD/SISTA Report No. 04-223 (submitted)
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